Convergence of the Phase-Field Equations to the Mullins-Sekerka Problem with Kinetic Undercooling
نویسندگان
چکیده
I prove that the solutions of the phase-field equations, on a subsequence, converge to a weak solution of the Mullins-Sekerka problem with kinetic undercooling. The method is based on energy estimates, a monotonicity formula, and the equipartition of the energy at each time. I also show that for almost all t, the limiting interface is ( d 1)-rectifiable with a square-integrable mean-curvature vector.
منابع مشابه
On stable parametric finite element methods for the Stefan problem and the Mullins-Sekerka problem with applications to dendritic growth
We introduce a parametric finite element approximation for the Stefan problem with the Gibbs–Thomson law and kinetic undercooling, which mimics the underlying energy structure of the problem. The proposed method is also applicable to certain quasi-stationary variants, such as the Mullins–Sekerka problem. In addition, fully anisotropic energies are easily handled. The approximation has good mesh...
متن کاملThree-dimensional crystal growth—I: linear analysis and self-similar evolution
In this paper, Part I of our study, we revisit the linear analysis (J. Appl. Phys. 34 (1963) 323; J. Appl. Phys. 36 (1965) 632; in: H.S. Peiser (Ed.), Crystal Growth, Pergamon, Oxford, 1967, p. 703) of the quasi-steady diffusional evolution of growing crystals in 3-D. We focus on a perturbed spherical solid crystal growing in an undercooled liquid with isotropic surface tension and interface ki...
متن کاملAn analysis of two classes of phase field models for void growth and coarsening in irradiated crystalline solids
A formal asymptotic analysis of two classes of phase field models for void growth and coarsening in irradiated solids has been performed to assess their sharp-interface kinetics. It was found that the sharp interface limit of type B models, which include only point defect concentrations as order parameters governed by Cahn-Hilliard equations, captures diffusion-controlled kinetics. It was also ...
متن کاملNewton-Product integration for a Two-phase Stefan problem with Kinetics
We reduce the two phase Stefan problem with kinetic to a system of nonlinear Volterra integral equations of second kind and apply Newton's method to linearize it. We found product integration solution of the linear form. Sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.
متن کاملFinite element approximation of one-sided Stefan problems with anisotropic, approximately crystalline, Gibbs-Thomson law
We present a finite element approximation for the one-sided Stefan problem and the one-sided Mullins–Sekerka problem, respectively. The problems feature a fully anisotropic Gibbs–Thomson law, as well as kinetic undercooling. Our approximation, which couples a parametric approximation of the moving boundary with a finite element approximation of the bulk quantities, can be shown to satisfy a sta...
متن کامل